Meteorite Monday: Impact craters and surprises

Manicouagan Crater

Manicouagan Crater

When I picked the topic for this week’s Meteorite Monday, I figured it would go something like this:

Throughout it’s 4.5 billion year old history, the earth has been peppered with meteoroids great and small. The small ones either disintegrate in the atmosphere in a blazing spectacle or make it to the earth’s surface and become meteorites. The much larger ones, such as the one that may or may not have killed off the dinosaurs, leave large craters that scar the earth’s surface and inspire some of the worst sci-fi movies and television around (such as this one, that one, and the worst offender of them all).

The one in the picture above is the Manicougan Crater of Quebec, Canada. At approximately 215 million years old, it’s one of the oldest confirmed impact craters on the earth (1). That puts it towards the end of the Triassic age, and in geologic time, makes it relatively young. However, it had the unfortunate luck to land in an area that would be smoothed over and reworked by the advance and retreat of glaciers over thousands of years. Over time, and with the help of receding glaciers and human tinkering, the crater filled with water and is now partially used to generate electricity for Quebec and parts of New England.

The end. Quick, short and to the point.

What I didn’t count on, was reading about this:

In 1998 a group of researchers hypothesized that the Manicouagan Crater formed at the same time as four other craters across the world: Rouchechouart in France, Saint Martin in Canada, Obolon in the Ukraine and Red Wing in North Dakota (2). They then used a computer model to determine the position of the earth’s continents at the time of the impact. They found that all but Obolon and Red Wing occurred at the same lattitude. The latter two “on the other hand, lie on great circles of identical declination with Rochechouart and Saint Martin, respectively” (from the abstract, not my words). This means that the craters possibly formed during an impact event from a single asteroid that broke apart as it entered the earth’s surface. The subsequent collision formed a chain of craters that were separated by the slow, random shuffle of the earth’s tectonic plates.

For some this may be old news, but for me its new and represents one of coolest things about science blogging. When I write a post, I already have an idea of where I want to go with it and I do a little background reading to verify my claims. In the case of this post, I didn’t count on learning about impact crater chains on the earth’s surface. It’s that sort of discovery that really makes all the mental sweating worth it.


2. John G. Spray, Simon P. Kelley& David B. Rowley. Nature 392, 171-173 (12 March 1998) | doi:10.1038/32397

2 thoughts on “Meteorite Monday: Impact craters and surprises

  1. Good post.

    I don’t remember if I already had mention this, but have you heard about the book “T-rex and the crater of Doom”, written by Walter Alvarez? Though my reduced knowledge in Geology, I enjoyed the book since it provided accessible data and simple explanations about the whole process of the discovery of the crater that resulted in the dinosaur’s extinction.

    Perhaps the book only gives information the author wants, but still, I recommend the book. and you would certainly detect that sort of bias, if it exists.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s